55 research outputs found

    Context-Aware Verification of DMN

    Get PDF
    The Decision Model and Notation (DMN) standard is a user-friendly notation for decision logic. To verify correctness of DMN decision tables, many tools are available. However, most of these look at a table in isolation, with little or no regards for its context. In this work, we argue for the importance of context, and extend the formal verification criteria to include it. We identify two forms of context, namely in-model context and background knowledge. We also present our own context-aware verification tool, implemented in our DMN-IDP interface, and show that this context-aware approach allows us to perform more thorough verification than any other available tool

    Knowledge-Based Support for Adhesive Selection: Will it Stick?

    Full text link
    As the popularity of adhesive joints in industry increases, so does the need for tools to support the process of selecting a suitable adhesive. While some such tools already exist, they are either too limited in scope, or offer too little flexibility in use. This work presents a more advanced tool, that was developed together with a team of adhesive experts. We first extract the experts' knowledge about this domain and formalize it in a Knowledge Base (KB). The IDP-Z3 reasoning system can then be used to derive the necessary functionality from this KB. Together with a user-friendly interactive interface, this creates an easy-to-use tool capable of assisting the adhesive experts. To validate our approach, we performed user testing in the form of qualitative interviews. The experts are very positive about the tool, stating that, among others, it will help save time and find more suitable adhesives. Under consideration in Theory and Practice of Logic Programming (TPLP).Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    Modeling of active yaw systems for small and medium wind turbines

    Get PDF

    Canine Ependymoma: Diagnostic Criteria and Common Pitfalls

    Get PDF
    Reports of canine ependymoma are generally restricted to single case reports with tumor incidence estimated at 2% to 3% of primary central nervous system (CNS) tumors. While most commonly reported in the lateral ventricle, tumors can occur anywhere in the ventricular system and in extraventricular locations. Rosettes and pseudorosettes are a common histologic feature; however, these features can be mimicked by other CNS neoplasms. Thirty-seven potential ependymoma cases were identified in a retrospective database search of 8 institutions, and a histologic review of all cases was conducted. Of 37 cases, 22 candidate cases were further subjected to a consensus histologic and immunohistochemical review, and only 5 of 37 (13.5%) were conclusively identified as ependymoma. The neuroanatomic locations were the lateral ventricle (3/5), third ventricle (1/5), and mesencephalic aqueduct (1/5). Subtypes were papillary (4/5) and tanycytic (1/5). Histologic features included rosettes (5/5), pseudorosettes (5/5), ependymal canals (2/5), tanycytic differentiation (1/5), blepharoplasts (1/5), ciliated cells (1/5), and high nuclear to cytoplasmic ratio (5/5). Immunolabeling for GFAP (4/4) and CKAE1/3 (3/4) was found in pseudorosettes, rosettes, and scattered individual neoplastic cells. Diffuse but variably intense cytoplasmic S100 immunolabeling was detected in 3 of 4 cases. Olig2 intranuclear immunolabeling was observed in less than 1% of the neoplastic cells (3/3). Tumors that had pseudorosettes and mimicked ependymoma included oligodendroglioma, choroid plexus tumor, pituitary corticotroph adenoma, papillary meningioma, and suprasellar germ cell tumor. These findings indicate that canine ependymoma is an extremely rare neoplasm with histomorphologic features that overlap with other primary CNS neoplasms

    Molecular imprinting science and technology: a survey of the literature for the years 2004-2011

    Full text link

    Evalutation et optimisation des transferts thermiques aux interfaces des assemblages pour le domaine spatial

    No full text
    Bolted assemblies are present at different scales on equipment for space applications. The increase of power and the miniaturization of the electronics amplifies the need for a performant coupling between equipment and the spacecraft’s structure. This coupling can be obtained by thermal interface materials placed in between assembled pieces. The mastery of mechanical and thermal behaviours is the key to be able to evaluate the interface’s thermal performance at first and study improvement possibilities afterwards.This study addresses two different thermal interface materials with a different industrial application in order to cover a large spectrum and implement a universal protocol. At first, the exhaustive mechanical and thermal characterisation process is discussed on which the numerical material model is built. This material model is then integrated in a simulation containing the whole assembly including the interface material, electronic equipment structure and bolts. Demonstrators based on existing industrial applications are developed and their mechanical behaviour and thermal performance are verified by experiments and compared against numerical simulations. The mechanical and thermal results obtained from the test campaign confirm the numerical results. The numerical simulations have permitted to understand different predominant phenomena in the industrial applications. Indeed, the two different materials have revealed a different problematic such as for example the importance of the contact surface for a rigid interface material and the importance of the conditions during tightening of the bolts for a soft interface material.During the numerical simulation of a demonstrator it was found that the loss of contact affects strongly the thermal performance. This observation accentuates the need and importance to master the behaviours of interface materials in industrial applications. An amelioration has been proposed and tested which consisted of adding a secondary layer of interface material their where the contact was lost. This solution has allowed to increase the thermal performance by 26 % in the case of the demonstrator studied in this work.Les assemblages par éléments de fixation vissés sont présents à différentes échelles dans les équipements spatiaux. L'augmentation de la puissance et la miniaturisation des électroniques embarquées accroît le besoin d'un couplage thermique performant entre l'équipement et la structure du satellite. Ce couplage peut être obtenu par des matériaux d'interface thermiques placés entre les pièces assemblées. Une maitrise du comportement mécanique et thermique est essentielle afin dans un premier temps de pouvoir évaluer la performance thermique d'une interface et ensuite de pouvoir étudier les pistes d'amélioration.Cette thèse s'intéresse à deux types de matériaux d'interface différents avec une application industrielle pour le domaine spatial, afin de couvrir un large spectre et mettre en œuvre un protocole universel. Premièrement, les travaux s’orientent sur la caractérisation mécanique et thermique exhaustive des matériaux d'interface à partir de laquelle un modèle matériau numérique est construit. Ce modèle matériau est ensuite intégré dans la simulation d'un assemblage complet contenant le matériau d'interface, le boitier électronique et les fixations. Des démonstrateurs basés sur des applications industrielles existantes ont été conçus et leur comportement mécanique et leur performance thermique ont été vérifiés expérimentalement puis confrontés aux simulations numériques. Les résultats mécaniques et thermiques expérimentaux confirment les résultats numériques. La simulation numérique a permis de comprendre certains phénomènes prédominant au sein de l’application industrielle. En effet, les deux matériaux ont dévoilé des problématiques différentes comme l’importance des conditions de serrage pour le premier matériau d’interface souple (Tflex) et de la zone de contact pour le second matériau d’interface rigide (Chotherm).Lors de la simulation numérique d’un des démonstrateurs, une perte de contact importante qui affecte fortement la performance thermique a été identifiée. Ce constat accentue le besoin et l’importance de la maîtrise du comportement des matériaux d’interface dans une application industrielle. Une amélioration a été proposée et testée qui consiste à ajouter une surcouche de matériau d’interface là où le contact est perdu. Cette solution a permis d’augmenter la performance thermique de l’interface de 26% dans le cas d’étude considéré pour cette thèse
    corecore